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Abstract
We present a method to infer network connectivity from aiile dynamics in networks of synchronizing
phase oscillators. We study the long-term stationary mspdo temporally constant driving. For a given
driving condition, measuring the phase differences andthiective frequency reveals information about
how the oscillators are interconnected. Sufficiently mapetitions for different driving conditions yield
the entire network connectivity from measuring the dynamdnly. For sparsely connected networks we

obtain good predictions of the actual connectivity everféomally under-determined problems.
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Synchronization of networks of coupled units is an ubiqustphenomenon in nature. It oc-
curs on very different temporal and spatial scales in a aaesystems as different as Josephson
junction arrays and networks of neurons in the brair [1, 2,/8kentral issue in current multi-
disciplinary research is to understand the relations betwestwork structure and network dy-
namics. Given an idealized model of the dynamics of the iddal units and of their interactions,
what can we tell about features of the collective dynamigegedding on the network connectivity,
say a regular lattice, a random network or some more ingigatonnected network|[2,) 3] 4]?
For many biological systems, such as networks of neurotesacting proteins or genes, and eco-
logical foodwebsl[9, 10, 11, 12,113,/14], however, importaspects of the network structure are
largely unknown such that inverse methods may prove uskéfubuld thus be desirable to answer
the reverse question: Can we infer information about th@eotivity of a network from controlled
measurements of its dynamics?

Here we follow this novel perspective for synchronizing gdascillators that interact on net-
works of general connectivity. When driving one or more batrs, the measured phase dy-
namics reveals information about the specific connectiwtg demonstrate that and how, given
a network of N oscillators, each experiment (consisting of driving andasuging) providesV
restrictions onto the network connectivity that is defingd?* coupling strengths. Exploiting
this, we reveal the entire netwodonnectivityby repeatedly performing measurements ofdiie
namicsonly, underN independent driving conditions. Furthermore, assumiag tdal networks
are substantially more sparsely connected than all-favallextend the method to reliably predict
the entire connectivity of the network even by a number ofeexpents that is much smaller than
the number of units in the network.

We consider a system d¥ Kuramoto oscillators, a paradigmatic model that has been su
cessfully used to understand collective dynamical phemanie engineering, physics, chemistry,
biology and medicine [15%, 16, 17,118, 19/ 20]. The oscillatmre coupled on a directed network

of unknown connectivity with their dynamics satisfying

N
éi = w0+ Z Jijsin(¢; — i) + Lim (1)

j=1
where¢;(t) is the phase of oscillatarat timet, w;, o its natural frequency and;; the coupling
strength from oscillato§ to : (J;; = 0 if this connection is absent). The quanttty,, defines the
strength of an external signal to oscillatdor driving conditionm; it is identically zero,l; = 0,
if the network is not driven. We define the in-degige= |{.J;; # 0|j € {1,...,N}}| as the
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number of incoming links to oscillatar

Consider the stationary dynamics on a phase locked attithetios close to in-phase synchrony
and thus satisfies;(t) — ¢;(t) = d;; where thed;; , |d;;| < 1, are constant in time. Networks
satisfyingJ;; > 0 and|w; o — w; | sufficiently small for alli, j exhibit such a stable phase-locked

state close to synchrony. The phase-locked condition ®frée (undriven) dynamics reads

N
Qo = wio + Z Jijsin(gjo — ¢io) (2)

j=1
where(), is the collective frequency.

For synchronizing systems, commonly only one or a few scplantities (such as one complex
order parameter) are computed from measured dynamicalslath as the oscillators’ phases),
often resulting in a statistically accurate descriptiortted overall network dynamics. Here we
take a complementary approach and seek a more detailedpdiescof the network dynamics in
order to exploit this information for revealing network cattivity.

We drive one or more oscillators in the network by temporathynstant input signals; ,,,

i € {1,..., N} that can be positive, negative or zero (meaning that oswmiliais not driven).

Such inputs effectively change their natural frequendieeping the signal strengths sufficiently
small, we structurally perturb the phase-locked state shahit stays phase-locked and close to
the original (cf. Fig[l). Such a driving signal results intepe pattern of the entire network that

depends on the details of the connectivity of that networlvels as on the driving signal itself

[5,16,7,8, 21, 22]. The perturbed phase-locked state sisfi
N
Q= wio + Z Jig sin(@jm — dim) + Lim 3)
j=1
foralli € {1,..., N} where now?,, is the new collective frequency that has changed due to the

driving and¢; ,,, are the stationary phases in response to the driving.
Now take the differences between the phase-locked condifar the driven and the undriven
system,
N
Djm = Z Jij [Sin(@jm — Gim) — sin(djo0 — ¢io)] (4)
=1
whereD, ,,, := Q,, — Qo — L; For sufficiently small structural perturbations we appnuate

sin(z) = x + O(z?) and abbreviate the phase shifs, := ¢;.,, — ¢;, yielding
N A~
Di,m - Z Jijej,m (5)
j=1
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Figure 1: (color) Driving induces phase patterns, imgiicitefined by [B). The network ha = 16
oscillators, each connected with a constant coupling gtrerl;; = 1/k; to k; = 8 randomly selected
others (/;; = 0 otherwise). (a) Homogeneous frequencigs= 1, (b) inhomogeneous random frequencies
w; € 1,1+ Aw], Aw = 0.1. Both panels display the phase differences; := max;{¢;} — ¢; in the
phase-locked states versiusThe responses to three different driving conditions, €lgl0) one oscillator

i = 5 driven, Is; = 0.3; (red O) two oscillatorsi € {2,8} driven, I,o = Ig> = 0.3; (grey e) all
oscillators driven by a signal of random strength < [0, 0.3] are shown along with the undriven dynamics

().
whereJ is theN x N Laplacian matrix is given by

. y for ¢ £ 5
Jy = a (6)
= kkny Jin fOr i=j

Given one driving conditiom:, we measureV — 1 independent phase shifts,, and one col-
lective frequency,, to obtainNV linearized equation§l(5) that restrict thé dimensional space
of all possible network connectiviti€s;;); jci,..,n}. This is the maximum number of restrictions

one can deduce from one experiment. As a consequence, frasuneenents under linearly inde-
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Figure 2: Inferring connectivity from measuring respongaainics. M = N = 16 experimentsi[24]. (a)
Connectivity of the network of Fig 1a as obtained using E@sE4J. The matrix of connection strengths
Ji; is gray-coded from light gray.J{; = 0) to black ¢/;; = max; j{Jy;}). (b) Element-wise absolute
difference|ijriginal — Jgerved| plotted on the same scale as (a). Inset shows magnifiedetiffe100 x
|J9nel . yderived | with a cutoff at unity (black). Panels (c) and (d) are analegto (a) and (b) for the

network with inhomogeneous frequencies of Fig. 1b.

pendent driving conditions, we obtain more and more infaimmaabout the connectivity: After

performingM experiments [26] the space of networks is restricted by equations
D=J6 (7)

whered = (0;)icq1,...N}me{1,...,m} 1S the N x M matrix of column vectors of phase differences
for each experiment: and, analogouslyD = (D;,,): is the N x M matrix of the effective
frequency offsets. Thus we are left with @ — M) N-dimensional family of possible networks
that are consistent with th&/ measured data sets. In particular, this implies that dffex N
experiments the network connectivity is specified compete given byJ = Df~*. We thus find
the networkconnectivityfrom measuring the respondgnamiconly, see, e.g. Fig. 2.

This direct method in principle works for networks with hogemeous as well as with inho-
mogeneous frequencies [25]. The method is capable of iagaabt only which links are present
and which are absent but also gives a good quantitative atiof the actual link strengths; .

It has, however, also some drawbacks. The problem of solfdpgan be ill-conditioned in the
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sense that the ratio of the largest and smallest singulaeafl is large, leading to low-quality
reconstruction. Moreover, the direct method might becamaractical when studying real-world
networks which often consist of a large numBéof units and thus would require a large number
M = N of (possibly costly) experiments.

Can we obtain the connectivity more efficiently, even with < N experiments? In many
networks, such as networks of neurons in the brain, a sufmtanmber of potential links aneot
present: each nodetypically has a numbek; < N of links. Here we exploit this fact and look
for that connectivity matrix/ that has the least number of links (maximum numbef;pf= 0) but
is still consistent with alll\/ measured data sets.

To achieve this goal we use the constraiils (7) to pararaettre family of admissible matrices
by (N — M)N real parameter®,;, i € {1,...,N}, j € {M +1,...,N} in a standard way
using a singular value decomposition@f = USVT where theM x N matrix S contains the
singular values on the diagond;; = §,;0; > 0. We rewrite the set of all coupling matrices
J = DUSVT + PV , settingP,; = 0 for all j < M andS;; = d;;/0; if o; > 10~* andS;; = 0 if

o; < 107* . Finally, we minimize the 1-norms of the row vectorsi)(input coupling strengths)

N
= 2 Wl (8)

=i

J;

with respect to the parametefy separately for all oscillators By this method we find the
network J that is closest to the origii = 0, which in 1-norm is one with a minimal number of
incoming links (maximal number of zero entries)![27]; thus find the sparsest of all networks
satisfying the measurement data. Reasonably good reaotistrs can already be obtained with
the number of experimenfs being substantially smaller thaw, as illustrated in Figld3.

How reliable is such a reconstruction? This depends on ttalslef the network connectivity
and the realization of driving. We did a case study for randwtworks of different sizesv,
where each oscillator receives input connections figm= k£ < N randomly chosen others.

H . e |
Using Jmax = maxy j: {‘J;J/I?/rlved | original

Z'/j/

}, define the element-wise relative difference as

/ 2 (9)

such thatAJ;; € [0,1]. After M experiments, the quality of reconstruction is defined as the

AJZ] = J_l

erived original
max Jz‘j -J ?

ij

fraction
Qu(M) = =5 Y H((1—a) = AJy) € 0,1 (10
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Figure 3: Revealing connectivity withf < N measurements. NetworkV( = 64, £k = 10, Aw = 0)
reconstructed by minimizing the 1-norm, (& = 38, (b) M = 24. The insets show the element-wise

absolute differences to the original network.

of coupling strengths which are considered correct. Here 1 is the required accuracy of the
coupling strengths and the Heaviside step functio#{ (x) = 1 for x > 0, H(z) = 0 for z < 0.
Typically, the quality of reconstruction increases with (but depends also on the realizations of
the experiments), becoming close to one alreadyMosubstantially smaller thal, see Fig[Ha.

We furthermore evaluated the minimum number of experiments
My, = min{M [ Qa(M) = q} (11)

required for accurate reconstruction on quality lexeFigure[4b shows/( g0 0.95 , the minimum
number of experiments required for having at least 90% of the links accurate in strength on a
level of at leastv = 95%), as a function ofV. The numerics suggests théf, , generally scales
sub-linearly (presumably logarithmically) with netwoiike NV for reasonabl® < 1 —a <« 1 and
0 < 1—¢ < 1. In particular, it implies that the connectivity of a netiaran be revealed reliably
even if M is much smaller than the network size

Recently, the response of synchronizing phase oscillabod#ferent kinds of driving signals
has been studied for random networks and lattices|[%] 6, .7,I8]the present study we took
advantage of the fact that in response to controlled drigghgalso [21| 22]) the dynamics induced
may critically depend on the network connectivity (cf. alsg. [1). This is generally the case if
the networks are strongly connected| [23] but have otheraiibirary connectivities (cf. EgLX3)
and [22]). Thus information about tle®nnectivitycan be revealed from measuring the response
dynamics To achieve this, we exploited all available informationtioé network dynamics (the
N — 1 independent phase differences and the collective fregiigather than only statistical

information, such as one complex order parameter. Iniagdgtin a recent study, Arenas et al.
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Figure 4: Quality of reconstruction and required numbergdegiments. (a) Quality of reconstruction
(. = 0.95) displayed fork = 10 and N = 24 (&), N = 36 (A), N = 66 (), N = 96 (O) . (b)
Minimum number of experiments requiregd £ 0.90, a = 0.95) versus network sizé&/ with best linear

and logarithmic fits (gray and black solid lines). Inset se@ame data wittV on logarithmic scale.

[20] also used more detailed information of the dynamicssarmtessfully inferred the hierarchical
structure of a network.

The method presented here not only identifies where linkprassent and where they are absent
but also gives a good estimate for the strength of each ctione&or networks with a substantial
number of potential links absent, we furthermore showed toopredict the connectivity in a reli-
able way even by a number of experiments that is much smhberthe network size. In fact, the
numerical evaluation suggests that the number of expetsweqguired for faithful reconstruction
only scales sub-linearly with the network size. The rekdtisimple yet efficient method presented
here thus qualifies as potentially practically useful atsaréal systems of moderate or larger size
where the number of measurement might be desired as smalkabfe. An important question
for future research is thus how to extend the method preddmdee to networks of dynamical
elements that are described by more than one variable ahg@dbksibly do not synchronize but
organize into some other, more complicated, collectiviesta

The multidisciplinary research community studying netkgohas recently seen significant
progress towards understanding the implications of stratteatures for network dynamics and
function, in particular in biological networks. Interagjiexamples [9, 10, 11] include (i) net-
work motifs, small subnetworks that occur significantly moften than in randomized networks,
have been identified in a variety of complex systems and nhghtlesigned for functionality;
(i) a small part of a genetic pathway was successfully idiedtbased on expression profiling;

(iif) neural wiring in the brain appears to follow optimizat rules. Together with such find-



ings, our results on synchronizing oscillator networksgasg a very promising future direction
of research: Methods similar to the one presented here dlouthe one hand help to better
understand structure-dynamics relations from measurmtumoed, possibly complicated, stable
dynamics; on the other hand they could also help clarifyingcsural questions in the first place,
e.g., by identifying functionally meaningful parts of a wetk.

| thank C. Kirst and S. Strogatz for helpful discussions.Kremvledge financial support by the
BMBF Germany via the BCCN Gottingen under grant 01GQ0430myrithe Max Planck Society.
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