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Abstract

We present a method to infer network connectivity from collective dynamics in networks of synchronizing

phase oscillators. We study the long-term stationary response to temporally constant driving. For a given

driving condition, measuring the phase differences and thecollective frequency reveals information about

how the oscillators are interconnected. Sufficiently many repetitions for different driving conditions yield

the entire network connectivity from measuring the dynamics only. For sparsely connected networks we

obtain good predictions of the actual connectivity even forformally under-determined problems.

PACS numbers: 05.45.Xt, 89.75.-k, 87.18.Sn, 87.10.+e
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Synchronization of networks of coupled units is an ubiquitous phenomenon in nature. It oc-

curs on very different temporal and spatial scales in a variety of systems as different as Josephson

junction arrays and networks of neurons in the brain [1, 2, 3]. A central issue in current multi-

disciplinary research is to understand the relations between network structure and network dy-

namics. Given an idealized model of the dynamics of the individual units and of their interactions,

what can we tell about features of the collective dynamics depending on the network connectivity,

say a regular lattice, a random network or some more intricately connected network [2, 3, 4]?

For many biological systems, such as networks of neurons, interacting proteins or genes, and eco-

logical foodwebs [9, 10, 11, 12, 13, 14], however, importantaspects of the network structure are

largely unknown such that inverse methods may prove useful.It would thus be desirable to answer

the reverse question: Can we infer information about the connectivity of a network from controlled

measurements of its dynamics?

Here we follow this novel perspective for synchronizing phase oscillators that interact on net-

works of general connectivity. When driving one or more oscillators, the measured phase dy-

namics reveals information about the specific connectivity. We demonstrate that and how, given

a network ofN oscillators, each experiment (consisting of driving and measuring) providesN

restrictions onto the network connectivity that is defined by N2 coupling strengths. Exploiting

this, we reveal the entire networkconnectivityby repeatedly performing measurements of thedy-

namicsonly, underN independent driving conditions. Furthermore, assuming that real networks

are substantially more sparsely connected than all-to-all, we extend the method to reliably predict

the entire connectivity of the network even by a number of experiments that is much smaller than

the number of units in the network.

We consider a system ofN Kuramoto oscillators, a paradigmatic model that has been suc-

cessfully used to understand collective dynamical phenomena in engineering, physics, chemistry,

biology and medicine [15, 16, 17, 18, 19, 20]. The oscillators are coupled on a directed network

of unknown connectivity with their dynamics satisfying

φ̇i = ωi,0 +
N

∑

j=1

Jij sin(φj − φi) + Ii,m (1)

whereφi(t) is the phase of oscillatori at timet, ωi,0 its natural frequency andJij the coupling

strength from oscillatorj to i (Jij = 0 if this connection is absent). The quantityIi,m defines the

strength of an external signal to oscillatori for driving conditionm; it is identically zero,Ii,0 ≡ 0,

if the network is not driven. We define the in-degreeki := |{Jij 6= 0 | j ∈ {1, . . . , N}}| as the
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number of incoming links to oscillatori.

Consider the stationary dynamics on a phase locked attractor that is close to in-phase synchrony

and thus satisfiesφi(t) − φj(t) = dij where thedij , |dij| ≪ 1, are constant in time. Networks

satisfyingJij ≥ 0 and|ωi,0 − ωj,0| sufficiently small for alli, j exhibit such a stable phase-locked

state close to synchrony. The phase-locked condition for the free (undriven) dynamics reads

Ω0 = ωi,0 +
N

∑

j=1

Jij sin(φj,0 − φi,0) (2)

whereΩ0 is the collective frequency.

For synchronizing systems, commonly only one or a few scalarquantities (such as one complex

order parameter) are computed from measured dynamical data(such as the oscillators’ phases),

often resulting in a statistically accurate description ofthe overall network dynamics. Here we

take a complementary approach and seek a more detailed description of the network dynamics in

order to exploit this information for revealing network connectivity.

We drive one or more oscillators in the network by temporallyconstant input signalsIi,m,

i ∈ {1, . . . , N} that can be positive, negative or zero (meaning that oscillator i is not driven).

Such inputs effectively change their natural frequencies.Keeping the signal strengths sufficiently

small, we structurally perturb the phase-locked state suchthat it stays phase-locked and close to

the original (cf. Fig. 1). Such a driving signal results in a phase pattern of the entire network that

depends on the details of the connectivity of that network aswell as on the driving signal itself

[5, 6, 7, 8, 21, 22]. The perturbed phase-locked state satisfies

Ωm = ωi,0 +
N

∑

j=1

Jij sin(φj,m − φi,m) + Ii,m (3)

for all i ∈ {1, . . . , N} where nowΩm is the new collective frequency that has changed due to the

driving andφi,m are the stationary phases in response to the driving.

Now take the differences between the phase-locked conditions for the driven and the undriven

system,

Di,m =

N
∑

j=1

Jij [sin(φj,m − φi,m) − sin(φj,0 − φi,0)] (4)

whereDi,m := Ωm − Ω0 − Ii,m. For sufficiently small structural perturbations we approximate

sin(x) = x + O(x2) and abbreviate the phase shiftsθj,m := φj,m − φj,0 yielding

Di,m =
N

∑

j=1

Ĵijθj,m (5)
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Figure 1: (color) Driving induces phase patterns, implicitly defined by (3). The network hasN = 16

oscillators, each connected with a constant coupling strength Jij = 1/ki to ki ≡ 8 randomly selected

others (Jij = 0 otherwise). (a) Homogeneous frequencies,ωi ≡ 1; (b) inhomogeneous random frequencies

ωi ∈ [1, 1 + ∆ω], ∆ω = 0.1. Both panels display the phase differences∆φi := maxj{φj} − φi in the

phase-locked states versusi. The responses to three different driving conditions, (blue ©) one oscillator

i = 5 driven, I5,1 = 0.3; (red ©) two oscillatorsi ∈ {2, 8} driven, I2,2 = I8,2 = 0.3; (grey •) all

oscillators driven by a signal of random strengthIi,3 ∈ [0, 0.3] are shown along with the undriven dynamics

(×).

whereĴ is theN × N Laplacian matrix is given by

Ĵij =







Jij for i 6= j

−
∑

k,k 6=j Jik for i = j
. (6)

Given one driving conditionm, we measureN − 1 independent phase shiftsθi,m and one col-

lective frequencyΩm to obtainN linearized equations (5) that restrict theN2 dimensional space

of all possible network connectivities(Jij)i,j∈{1,...,N}. This is the maximum number of restrictions

one can deduce from one experiment. As a consequence, from measurements under linearly inde-
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Figure 2: Inferring connectivity from measuring response dynamics.M = N = 16 experiments [24]. (a)

Connectivity of the network of Fig 1a as obtained using Eqs. (5–7). The matrix of connection strengths

Jij is gray-coded from light gray (Jij = 0) to black (Jij = maxi′,j′{Ji′j′}). (b) Element-wise absolute

difference|Joriginal
ij − Jderived

ij |, plotted on the same scale as (a). Inset shows magnified difference100 ×

|Joriginal
ij − Jderived

ij | with a cutoff at unity (black). Panels (c) and (d) are analogous to (a) and (b) for the

network with inhomogeneous frequencies of Fig. 1b.

pendent driving conditions, we obtain more and more information about the connectivity: After

performingM experiments [26] the space of networks is restricted byMN equations

D = Ĵθ (7)

whereθ = (θi,m)i∈{1,...,N},m∈{1,...,M} is theN × M matrix of column vectors of phase differences

for each experimentm and, analogously,D = (Di,m)i,m is theN × M matrix of the effective

frequency offsets. Thus we are left with an(N − M)N-dimensional family of possible networks

that are consistent with theM measured data sets. In particular, this implies that afterM = N

experiments the network connectivity is specified completely as given byĴ = Dθ−1. We thus find

the networkconnectivityfrom measuring the responsedynamicsonly, see, e.g. Fig. 2.

This direct method in principle works for networks with homogeneous as well as with inho-

mogeneous frequencies [25]. The method is capable of revealing not only which links are present

and which are absent but also gives a good quantitative estimate of the actual link strengthsJij .

It has, however, also some drawbacks. The problem of solving(7) can be ill-conditioned in the
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sense that the ratio of the largest and smallest singular value ofθT is large, leading to low-quality

reconstruction. Moreover, the direct method might become impractical when studying real-world

networks which often consist of a large numberN of units and thus would require a large number

M = N of (possibly costly) experiments.

Can we obtain the connectivity more efficiently, even withM < N experiments? In many

networks, such as networks of neurons in the brain, a substantial number of potential links arenot

present: each nodei typically has a numberki ≪ N of links. Here we exploit this fact and look

for that connectivity matrixJ that has the least number of links (maximum number ofJij = 0) but

is still consistent with allM measured data sets.

To achieve this goal we use the constraints (7) to parameterize the family of admissible matrices

by (N − M)N real parametersPij, i ∈ {1, . . . , N}, j ∈ {M + 1, . . . , N} in a standard way

using a singular value decomposition ofθT = USV T where theM × N matrix S contains the

singular values on the diagonal,Sij = δijσi ≥ 0. We rewrite the set of all coupling matrices

Ĵ = DUS̃V T + PV , settingPij = 0 for all j ≤ M andS̃ij = δij/σi if σi > 10−4 andS̃ii = 0 if

σi ≤ 10−4 . Finally, we minimize the 1-norms of the row vectors ofĴ (input coupling strengths)

∥

∥

∥
Ĵi

∥

∥

∥

1
:=

N
∑

j=1;j 6=i

|Jij| (8)

with respect to the parametersP , separately for all oscillatorsi. By this method we find the

networkJ that is closest to the originJ = 0, which in 1-norm is one with a minimal number of

incoming links (maximal number of zero entries) [27]; thus we find the sparsest of all networks

satisfying the measurement data. Reasonably good reconstructions can already be obtained with

the number of experimentsM being substantially smaller thanN , as illustrated in Fig. 3.

How reliable is such a reconstruction? This depends on the details of the network connectivity

and the realization of driving. We did a case study for randomnetworks of different sizesN ,

where each oscillator receives input connections fromki ≡ k < N randomly chosen others.

UsingJmax = maxi′,j′

{

∣

∣Jderived
i′j′

∣

∣ ,
∣

∣

∣
Joriginal

i′j′

∣

∣

∣

}

, define the element-wise relative difference as

∆Jij := J−1
max

∣

∣

∣
Jderived

ij − Joriginal
ij

∣

∣

∣

/

2 (9)

such that∆Jij ∈ [0, 1]. After M experiments, the quality of reconstruction is defined as the

fraction

Qα(M) :=
1

N2

∑

i,j

H ((1 − α) − ∆Jij) ∈ [0, 1] (10)
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Figure 3: Revealing connectivity withM < N measurements. Network (N = 64, k = 10, ∆ω = 0)

reconstructed by minimizing the 1-norm, (a)M = 38, (b) M = 24. The insets show the element-wise

absolute differences to the original network.

of coupling strengths which are considered correct. Hereα ≤ 1 is the required accuracy of the

coupling strengths andH the Heaviside step function,H(x) = 1 for x ≥ 0, H(x) = 0 for x < 0.

Typically, the quality of reconstruction increases withM (but depends also on the realizations of

the experiments), becoming close to one already forM substantially smaller thanN , see Fig. 4a.

We furthermore evaluated the minimum number of experiments

Mq,α := min{M |Qα(M) ≥ q} (11)

required for accurate reconstruction on quality levelq. Figure 4b showsM0.90,0.95 , the minimum

number of experiments required for having at leastq = 90% of the links accurate in strength on a

level of at leastα = 95%, as a function ofN . The numerics suggests thatMq,α generally scales

sub-linearly (presumably logarithmically) with network sizeN for reasonable0 < 1−α ≪ 1 and

0 < 1− q ≪ 1. In particular, it implies that the connectivity of a network can be revealed reliably

even ifM is much smaller than the network sizeN .

Recently, the response of synchronizing phase oscillatorsto different kinds of driving signals

has been studied for random networks and lattices [5, 6, 7, 8]. In the present study we took

advantage of the fact that in response to controlled driving(cf. also [21, 22]) the dynamics induced

may critically depend on the network connectivity (cf. alsoFig. 1). This is generally the case if

the networks are strongly connected [23] but have otherwisearbitrary connectivities (cf. Eq. (3)

and [22]). Thus information about theconnectivitycan be revealed from measuring the response

dynamics. To achieve this, we exploited all available information ofthe network dynamics (the

N − 1 independent phase differences and the collective frequency) rather than only statistical

information, such as one complex order parameter. Interestingly, in a recent study, Arenas et al.
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Figure 4: Quality of reconstruction and required number of experiments. (a) Quality of reconstruction

(α = 0.95) displayed fork = 10 andN = 24 (⋄), N = 36 (△), N = 66 (◦), N = 96 (©) . (b)

Minimum number of experiments required (q = 0.90, α = 0.95) versus network sizeN with best linear

and logarithmic fits (gray and black solid lines). Inset shows same data withN on logarithmic scale.

[20] also used more detailed information of the dynamics andsuccessfully inferred the hierarchical

structure of a network.

The method presented here not only identifies where links arepresent and where they are absent

but also gives a good estimate for the strength of each connection. For networks with a substantial

number of potential links absent, we furthermore showed howto predict the connectivity in a reli-

able way even by a number of experiments that is much smaller than the network size. In fact, the

numerical evaluation suggests that the number of experiments required for faithful reconstruction

only scales sub-linearly with the network size. The relatively simple yet efficient method presented

here thus qualifies as potentially practically useful also for real systems of moderate or larger size

where the number of measurement might be desired as small as possible. An important question

for future research is thus how to extend the method presented here to networks of dynamical

elements that are described by more than one variable and that possibly do not synchronize but

organize into some other, more complicated, collective state.

The multidisciplinary research community studying networks has recently seen significant

progress towards understanding the implications of structural features for network dynamics and

function, in particular in biological networks. Interesting examples [9, 10, 11] include (i) net-

work motifs, small subnetworks that occur significantly more often than in randomized networks,

have been identified in a variety of complex systems and mightbe designed for functionality;

(ii) a small part of a genetic pathway was successfully identified based on expression profiling;

(iii) neural wiring in the brain appears to follow optimization rules. Together with such find-

8



ings, our results on synchronizing oscillator networks suggest a very promising future direction

of research: Methods similar to the one presented here should on the one hand help to better

understand structure-dynamics relations from measuring perturbed, possibly complicated, stable

dynamics; on the other hand they could also help clarifying structural questions in the first place,

e.g., by identifying functionally meaningful parts of a network.

I thank C. Kirst and S. Strogatz for helpful discussions. I acknowledge financial support by the

BMBF Germany via the BCCN Göttingen under grant 01GQ0430 andby the Max Planck Society.
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